
BiLO-CPDP: Bi-Level Programming for Automated Model
Discovery in Cross-Project Defect Prediction

Ke Li
♮
, Zilin Xiang

♯
, Tao Chen

§
, Kay Chen Tan

♣∗
♯
College of Computer Science and Engineering, UESTC, Chengdu, 611731, China

♮
Department of Computer Science, University of Exeter, Exeter, EX4 4QF, UK

§
Department of Computer Science, Loughborough University, Loughborough, LE11 3TU, UK

♣
Department of Computer Science, City University of Hong Kong, Tat Chee Avenue, Hong Kong SAR

k.li@exeter.ac.uk,ziling.xiang@hotmail.com,t.t.chen@lboro.ac.uk,kaytan@cityu.edu.hk

ABSTRACT
Cross-Project Defect Prediction (CPDP), which borrows data from

similar projects by combining a transfer learner with a classifier,

have emerged as a promising way to predict software defects when

the available data about the target project is insufficient. How-

ever, developing such a model is challenge because it is difficult

to determine the right combination of transfer learner and clas-

sifier along with their optimal hyper-parameter settings. In this

paper, we propose a tool, dubbed BiLO-CPDP, which is the first of

its kind to formulate the automated CPDP model discovery from

the perspective of bi-level programming. In particular, the bi-level

programming proceeds the optimization with two nested levels in

a hierarchical manner. Specifically, the upper-level optimization

routine is designed to search for the right combination of transfer

learner and classifier while the nested lower-level optimization rou-

tine aims to optimize the corresponding hyper-parameter settings.

To evaluate BiLO-CPDP, we conduct experiments on 20 projects to

compare it with a total of 21 existing CPDP techniques, along with

its single-level optimization variant and Auto-Sklearn, a state-of-
the-art automated machine learning tool. Empirical results show

that BiLO-CPDP champions better prediction performance than all

other 21 existing CPDP techniques on 70% of the projects, while be-

ing overwhelmingly superior to Auto-Sklearn and its single-level

optimization variant on all cases. Furthermore, the unique bi-level

formalization in BiLO-CPDP also permits to allocate more budget

to the upper-level, which significantly boosts the performance.

CCS CONCEPTS
• Software and its engineering→ Software creation andman-
agement; Software defect analysis.

∗
K. Li, Z. Xiang and T. Chen contributed equally to this research.

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than ACM

must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,

to post on servers or to redistribute to lists, requires prior specific permission and/or a

fee. Request permissions from permissions@acm.org.

ASE ’20, September 21–25, 2020, Virtual Event, Australia
© 2020 Association for Computing Machinery.

ACM ISBN 978-1-4503-6768-4/20/09. . . $15.00

https://doi.org/10.1145/3324884.3416617

KEYWORDS
Cross-project defect prediction, transfer learning, classification

techniques, automated parameter optimization, configurable soft-

ware and toolComparison under Different Levels of Environmental

Changes

ACM Reference Format:
Ke Li, Zilin Xiang, Tao Chen, and Kay Chen Tan. 2020. BiLO-CPDP: Bi-Level

Programming for Automated Model Discovery in Cross-Project Defect Pre-

diction. In 35th IEEE/ACM International Conference on Automated Software
Engineering (ASE ’20), September 21–25, 2020, Virtual Event, Australia. ACM,

New York, NY, USA, 12 pages. https://doi.org/10.1145/3324884.3416617

1 INTRODUCTION
Software defects are errors in code and its logic that cause a software

product to malfunction or to produce incorrect/unexpected results.

Given that software systems become increasingly ubiquitous in

our modern society, software defects are highly likely to result in

disastrous consequences to businesses and daily lives. For example,

the latest Annual Software Fail Watch report from Tricentis
1
shows

that, globally, software defects/failures affected over 3.7 billion

people and caused $1.7 trillion in lost revenue.

One of the key reasons behind the prevalent defects in modern

software systems is their increasingly soaring size and complexity.

Due to the limited resource for software quality assurance and the

intrinsic dependency among a large number of software modules,

it is expensive, if not impossible, to rely on human efforts (e.g.,

code review) to thoroughly inspect software defects. Instead, it

is more pragmatic to predict the defect-prone software modules

to which software engineers are suggested to focus their limited

software quality assurance resource. To this end, machine learning

algorithms have been widely used to automate the process of defect

prediction.

As discussed in [52], one of the keys to the success of defect

prediction models is the amount of data available for model training.

In practice, however, it is unfortunately not uncommon that such

data is scarce or even unavailable. This can be attributed to the small

size of the company and/or the targeted software project is the first

of its kind. Cross project defect prediction (CPDP), which aims to

predict defects in the a software project by leveraging experience

(e.g., training data or hyper-parameters of trained defect prediction

models) from other existing ones, has therefore become extremely

appealing [15]. Unfortunately, partially due to the difference of the

1
https://www.tricentis.com/resources/software-fail-watch-5th-edition/

https://doi.org/10.1145/3324884.3416617
https://doi.org/10.1145/3324884.3416617

ASE ’20, September 21–25, 2020, Virtual Event, Australia Li, Xiang and Chen, et al.

data distribution between the source and the target projects, the

performance of vanilla CPDP is not as promising as it was supposed

to be [36]. Transfer learning, which is able to transfer knowledge

across different domains, has shown to be able to overcome the

aforementioned challenges (e.g., data scarcity and data distribution

discrepancy) and has gradually become the main driving force for

CPDP [29]. Generally speaking, the basic idea is to equip a machine

learning classifier with a transfer learner that enables its ability to

learn from other projects in model building.

There is No Free Lunch in defect prediction given that machine

learning enabled defect prediction models often come with con-

figurable and adaptable parameters (87% prevalent classifiers are

with at least one parameter [43, 44]). The prediction accuracy on

various software projects largely depends on the parameter set-

tings of those defect prediction models [25, 26]. Furthermore, it

becomes more complicated in CPDP because: 1) the configurable

parameters is augmented by the transfer learner (85% widely used

CPDP techniques require at least one parameter to setup in the

transfer learner) thus lead to an enlarged search space; 2) there

exist complex yet unknown interactions among the parameters

of the classifier and those of the transfer learner (that is to say

parameter optimization over either the classifier or the transfer

learner alone may not lead to the overall optimal performance);

and 3) the optimal selection of the combination of classifier and

transfer learner is as important as parameter optimization but is un-

fortunately ignored in the current literature (most, if not all, CPDP

models are designed with an ad-hoc combination of transfer learner

and classifier, the performance of which is reported to be far from

optimal [21]). Although there exist some prior works considering

the hyper-parameter optimization for CPDP models [31, 34], they

only consider the hyper-parameters associated with the classifier.

As investigated in a latest empirical study [21], this practice is far

from truly optimizing the performance of the underlying CPDP

model while the settings of hyper-parameters of the transfer learner

are more decisive.

Bearing the above considerations in mind, we propose a new

tool, dubbed BiLO-CPDP, to automate the model discovery for CPDP

tasks. It provides an unified perspective for the combinatorial se-

lection of classifier and transfer learner, as well as their hyper-

parameter optimization within the mathematical framework of

bi-level programming, where two levels of nested optimization

problems are formulated: the upper-level optimization problem

is solved subject to the optimality of a lower-level optimization

problem. Specifically, the upper-level optimization problem aims

to identify the optimal combination of transfer learner and clas-

sifier from a given portfolio; while the lower-level optimization

problem is dedicated to searching for the optimal parameter setting

associated with the corresponding transfer learner and classifier.

Note that a combination of transfer learner and classifier is not

considered to be feasible for comparison unless the corresponding

parameters have been optimized. In BiLO-CPDP, the upper-level

optimization is formulated as a combinatorial optimization prob-

lem which is solved by the Tabu search [10] while the lower-level

optimization is modeled as an expensive optimization problem with

a limited budget to be solved by Tree-structured Parzen Estimator

(TPE) [4], a state-of-the-art Bayesian optimization algorithm.

To evaluate the the effectiveness of BiLO-CPDP for automated

model discovery in CPDP, we conduct experiments to compare

it with 21 existing CPDP techniques, its single-level variant and

Auto-Sklearn [8] — a state-of-the-art automated machine learning

(AutoML) tool— over 20 distinct projects. The results fully demon-

strate the overwhelming superiority of BiLO-CPDP over the others

with statistical significance and a large effect size on all projects.

In summary, the key contributions of this paper are as follows:

• To the best of our knowledge, BiLO-CPDP is the first of

its kind for automating CPDP from the perspective of bi-

level programming. Given that BiLO-CPDP is not only able

to automatically search the optimal combination of trans-

fer learner and classifier, but also can set their appropriate

hyper-parameter settings, it paves a new avenue for auto-

mated model discovery in CPDP.

• Through extensive experiments with 21 existing CPDP tech-

niques, we show that BiLO-CPDP is the best on 14 out of

20 projects, and second to only one existing technique for

another five. This fully demonstrates the effectiveness and

importance brought by automatically choosing the appro-

priate transfer learner and classifier associated with their

optimal hyper-parameter settings for CPDP.

• In terms of optimization problem formulation, on all projects,

we show that the bi-level programming formulated in BiLO-
CPDP is statistically better than hybridizing both combinato-

rial selection and parameter optimization as a single-level

global optimization problem, which is perhaps a more con-

servative solution as used in, e.g., Auto-Sklearn [8].
• Interestingly, from our experimental results, we disclose

that choosing the best combination of classifier and transfer

learner (upper level) is more important than fully optimizing

their parameters (lower level). Henceforth, given the limited

resource for software quality assurance, it is beneficial to

allocate more search budget to the upper-level optimization.

In the rest of this paper, Section 2 gives the background about

bi-level programming. Section 3 delineates the algorithmic imple-

mentation of BiLO-CPDP step by step. The experimental setup is

introduced in Section 4 and the results are analyzed in Section 5.

Thereafter, Section 6 and 7 reviews the related works and discusses

the threats to validity, respectively. Finally, Section 8 concludes this

paper and threads some lights on future directions.

2 BI-LEVEL PROGRAMMING
Bi-level programming is a mathematical program within which one

optimization problem is nested within another in a hierarchical

manner [42]. It is ubiquitous in many real-world optimization and

public/private sector decision-making problems where the real-

ized outcome of any solution or decision taken by the upper-level

authority (a.k.a. leader) to optimize their objectives is affected by

the response of lower-level entities (a.k.a. follower), who seek to

optimize their own outcomes. This is in principle similar to the

Stackelberg games [47] in which a leader first makes its move and

a follower maximizes the corresponding gain by taking the leader’s

move into account. It is interesting to note that the two levels of

optimization problems are asymmetric in bi-level programming.

BiLO-CPDP: Bi-Level Programming for Automated Model Discovery in CPDP ASE ’20, September 21–25, 2020, Virtual Event, Australia

That is to say, the upper-level leader has the entire picture of opti-

mization problems at both levels whereas the lower-level follower

usually takes the decisions from the leader and then optimizes its

own strategies.

The bi-level programming formulated in BiLO-CPDP can bemath-

ematically defined as:

maximize

x𝑢 ∈Λ𝑑×R𝑛,x𝑙 ∈R𝑛
𝐹 (x𝑢 , x𝑙∗)

subject to x𝑙∗ ∈ argmax{𝑓x𝑢 (x𝑙)}
, (1)

where x𝑢 ∈ Λ𝑑 ×R𝑛 and x𝑙 ∈ R𝑛 denote the upper- and lower-level

variables
2
while 𝐹 : Λ𝑑 ×R𝑛 → R and 𝑓x𝑢 : R𝑛 → R are the upper-

level and lower-level objective functions, respectively (details can

be found in Section 3). A bi-level programming that involves nested

optimization/decision-making tasks at both levels. For any given

combination x𝑢 , there exists a (x𝑢 , x𝑙∗) pair where x𝑙∗ is an optimal

(or near-optimal) response to x𝑢 represents a feasible solution to

the upper-level optimization problem given that it also satisfies the

constraints therein.

3 BI-LEVEL PROGRAMMING FOR
AUTOMATED CPDP MODEL DISCOVERY

The CPDP model building process consists of two intertwined parts:

1) transfer learning that augments data from different domains by

selecting relevant instances or assigning appropriate weights to dif-

ferent instances; and 2) defect prediction model building based on

adapted data. As reported in a latest research [21], the performance

of a CPDP model largely depend on the combination of transfer

learner and classifier along with their hyper-parameter settings. In

light of this, the BiLO-CPDP proposed in this work was specifically

designed to address such a problem. Through automatically discov-

ering the best combination of transfer learner and classifier as well

as their optimal hyper-parameter settings, BiLO-CPDP serves as an

automatic tool that provides a de nova CPDP model discovery. In

this section, we will delineate the architecture of BiLO-CPDP and
the algorithmic details of its optimization routines at both levels.

3.1 Overview of BiLO-CPDP
The overall architecture of BiLO-CPDP is illustrated in Fig. 1 which

consists of three key phases, i.e., data pre-processing, optimization
and performance validation.

(1) Data Pre-processing: Given a raw dataset with 𝑁 > 1

projects, software engineers are asked to specify which one

is the target domain that serves as the target domain data

while the remaining 𝑁 − 1 projects are then used as the

source domain data. In particular, all source domain data are

used in the model training while a part of the target domain

data is used as the hold-out set for the testing purpose. As

the default in BiLO-CPDP, we use 10% of the target domain

data for testing while the remaining 90% is for training. This

is because some transfer learners considered in this work do

need data from the target domain in training, e.g., MCWs [33].

For other transfer learners that can be trained independently

to the target domain, we use all data for testing.

2Λ𝑑 × R𝑛 means that the problem is a discrete combinatorial problem.

bar.c

bar.h

foo.c

foo.h

source domain
training data

bar.c

bar.h

foo.c

foo.h

target domain
training data

· · ·
· · ·

· · ·
· · ·

target domain
testing data

raw
dataset

calculate testing
performance

transfer learning
algorithms

defect prediction
model

Upper-level optimiztion

0

0.5

1

transfer learner cl
as
si
fi
er

A
U
C

Tabu search

Data pre-processing

Low-level optimiztion

calculate training
performance

Optimization
Performance
validation

TPE

Figure 1: The overall architecture of BiLO-CPDP.

(2) Optimization: BiLO-CPDP models CPDP as a bi-level pro-

gramming that not only identifies the most competitive com-

bination of transfer leaner and classifier for the underlying

CPDP task (tackled by the upper-level routine), but also

equips the chosen CPDP model with the appropriate hyper-

parameter settings (carried out by the lower-level routine).

Since the resources for software quality assurance are often

limited, the entire optimization process would inevitably be

constrained under a computational budget of running time.

In this regard, the unique bi-level programming formulated

in BiLO-CPDP can in fact provide a fine-grained and flexible

allocation of the budget between upper- and lower-level,

whose effects will be investigated as part of the experimental

evaluation in Section 5.4. The CPDP model, which has the

best combination with its optimal hyper-parameter settings

in terms of the training accuracy, is returned in the end. Note

that due to the lack of data samples, using training accuracy

in the parameter optimization of transfer learner is not un-

common and has shown promising results for CPDP [21].

(3) Performance Validation: After the optimization phase, as

an optional module in BiLO-CPDP, the generalization of the

built CPDP model can be validated and tested by using the

hold-out set from the target domain data, which is unknown

during training stage. In practice, this will be the new project

that one wishes to predict defects for. In BiLO-CPDP, the area
under the receiver operating characteristic (ROC) curve, i.e.,

AUC [51], is applied as the performance metric to measure

the effectiveness of a model. Formally, AUC is defined as:

𝐴𝑈𝐶 =

∑
𝑡−∈D−

∑
𝑡+∈D+ 1

[
𝑃𝑟𝑒𝑑 (𝑡−) < 𝑃𝑟𝑒𝑑

(
𝑡+
)]

|D− | · |D+ | , (2)

where 𝑃𝑟𝑒𝑑 (𝑡) is the probability that sample 𝑡 is predicted

to be a positive sample, and 1
[
𝑓 (𝑡−) < 𝑓

(
𝑡+
)]

is an indica-

tor function which returns 1 if 𝑓 (𝑡−) < 𝑓 (𝑡+) otherwise it
returns 0. D− is the set of negative samples, and D+ is the
set of positive samples. Apart from the fact that AUC has

been widely for software defect prediction [21], it has two

distinctive characteristics: 1) different from other prevalent

ASE ’20, September 21–25, 2020, Virtual Event, Australia Li, Xiang and Chen, et al.

metrics like precision and recall, AUC does not depend on

a particular threshold [51], which is difficult to tweak in

order to carry out an unbiased assessment; and 2) it is not

sensitive to imbalanced data which is not uncommon in soft-

ware defect prediction [22]. The larger the AUC value is, the

better prediction accuracy the model achieves. In particular,

the AUC value ranges between 0 and 1 where 0 indicates

the worst performance, 0.5 corresponds a randomly guessed

performance and 1 represents the best performance. Note

that AUC is also the metric used in optimization phase to

evaluate and compare training accuracy.

3.2 Upper-Level Optimization
Tables 1 and 2 respectively list the transfer learners and the classi-

fiers considered in our work, which form the portfolios. Note that

all transfer learners considered in BiLO-CPDP have been used in

either the defect prediction or CPDP literature while the classifiers

come from scikit-learn3, the state-of-the-art machine learning

Python library. In addition, the corresponding hyper-parameters as-

sociated with those transfer learners and classifiers along with their

value ranges are also provided in the corresponding tables. Any

combination of a transfer learner and a classifier comes up with a

CPDP model. The ultimate goal of the upper-level optimization is to

search for the best combination out of all possible alternatives (208

in this work) for the underlying CPDP task. In particular, for each

candidate combination of transfer learner and classifier, their corre-

sponding hyper-parameter settings are optimized via a lower-level

optimization routine which will be explained in Section 3.3.

At the upper-level in BiLO-CPDP, the search of the best combi-

nation of transfer learner and classifier is solved as a combinatorial

optimization problem as specified below.

• Search space: For the upper level, the search space consists

of all the valid combinations of transfer learners and classi-

fier picked up from the given portfolios, i.e., those listed in

Tables 1 and 2. In practice, such portfolios can be amended

and specified by the software engineers based on their pref-

erences/requirements.

• Objective function: Recall from the equation (1), the ob-

jective function for the upper level 𝐹 (x𝑢 , x𝑙∗) takes a com-

bination from the portfolio (x𝑢) and the optimized hyper-

parameter of such combination (x𝑙∗) as inputs. It then out-

puts the corresponding training AUC obtained by training

the CPDP model for comparison. Note that x𝑙∗ is initially
unknown for a given x𝑢 at the upper-level before running

a lower-level optimization routine. Therefore, the objective

function at upper-level optimization is constrained and de-

termined by the lower-level optimization.

• Optimization algorithm: For the upper-level optimization

in BiLO-CPDP, we use Tabu search [10] to serve as the opti-

mizer, which is also the entry point of the optimization phase.

In particular, we use Tabu search in this work because:

– Our problem is expensive and thus it is unrealistic for an

exact search to reach the optimal solution. Metaheuristic

such as Tabu search, which does not guarantee optimum

3
https://scikit-learn.org/stable/

Algorithm 1: runTabuSearch: Upper-level optimization

that tunes the combination of transfer learner and classifier.

Input: Portfolio of transfer learners T and classifiers C
Output: Optimal CPDP model x𝑢opt and its optimal

parameter settings x𝑙∗opt
1 Randomly initialize a valid combination of transfer learner

and classifier x𝑢 ← (𝑡, 𝑐); /* 𝑡 ∈ T and 𝑐 ∈ C are a

candidate transfer learner and classifier */

2 ℓ𝑡 ← ∅; /* ℓ𝑡 is the tabu list */

3 while The overall time budget is not exhausted do
4 [(x𝑢 , x𝑙∗), 𝐹 (x𝑢 , x𝑙∗)] ← searchCandidate(x𝑢 , ℓ𝑡);
5 if x𝑢 ∉ ℓ𝑡 then
6 ℓ𝑡 ← ℓ𝑡

⋃{x𝑢 };
7 return (x𝑢opt, x

𝑙∗
opt) ← argmaxx𝑢 ∈ℓ𝑡 {𝐹 (x

𝑢 , x𝑙∗)};

but can often produce near-optimal result, is more practi-

cal and acceptable.

– Unlike other metaheuristics, Tabu search employs local

search to speed up its convergence [10].

– Tabu search permits a better chance to escape from local

optima than other local search methods [10].

As shown in in Algorithm 1 and Algorithm 2, Tabu search

carries out a neighborhood search where the neighborhood

of the current solution is restricted by the search history

of previously visited solutions and is stored in the form of

a tabu list (lines 5 and 6 in Algorithm 1 and lines 5 to 9

in Algorithm 2). If all neighbors are tabu, it is acceptable to
take a move that worsen the value of the objective function

(lines 3 and 4 in Algorithm 2). This is what enables Tabu

search to escape from local optima, which is highly likely

to cause issues with a traditional gradient decent method.

According to a provided selection criteria, Tabu search only

keep a record of some previously visited states.

3.3 Lower-Level Optimization
As introduced in Section 3.1, the main purpose of the lower-level op-

timization is to optimize the hyper-parameters associated with the

chosen combination of transfer learner and classifier. Specifically,

this level in BiLO-CPDP is modeled and tackled as below.

• Search space: At this level, the search space is the configu-

ration space of the corresponding parameters for the transfer

learner and classifier picked up from the upper-level routine.

Indeed, as can be seen from Tables 1 and 2, such a config-

uration space might be different depending on the chosen

combination of transfer learner and classifier.

• Objective function: Recall from the equation (1), when a

combination of transfer learner and classifier is picked up

from the upper-level routine, the objective function for the

lower-level 𝑓 (x𝑙) takes the configuration of the correspond-

ing hyper-parameters as the inputs (x𝑙) and outputs the train-
ing AUC for the CPDP model. The AUC collected from the

result of the low-level routine is finally used as the objective

value at the upper-level routine to steer the optimization.

BiLO-CPDP: Bi-Level Programming for Automated Model Discovery in CPDP ASE ’20, September 21–25, 2020, Virtual Event, Australia

Table 1: Overview of 13 selected transfer learners ([N], [R] and [C] denote integer, real and categorical value, respectively).

Algorithm Parameter Range Algorithm Parameter Range Algorithm Parameter Range

NNfilter
[45]

k [N]

metric [C]

[1, 100]
Euc, Man, Che,

Min, Mah

CDE_SMOTE
[23]

k [N]

metric [C]

[1, 100]
Euc, Man, Che,

Min, Mah

FSS_bagging
[11]

topN [N]

threshold [R]

ratio [R]

[1, 15]
[0.3, 0.7]
[0.1, 0.5]

TCA+ [29]

kernel [C]

dime [N]

lamb [R]

primal, rbf,

linear, sam

[5, max(N_s,

N_t)]

[10𝐸 − 7, 100]

GIS [16]

prob [R]

chrm_size [R]

pop_size [N]

num_parts [N]

num_gens [N]

[0.02, 0.1]
[0.02, 0.1]
[2, 30]
[2, 6]
[5, 20]

CLIFE_MORPH
[32]

n [N]

alpha [R]

beta [R]

per [R]

[1, 100]
[0.05, 0.2]]
[0.2, 0.4]
[0.6, 0.9]

gama [R] [10𝐸 − 6, 100] mcount [N] [3, 10] HISNN [38] minham [N] [1, N_s]

MCWs [33]

k [N]

sigma [R]

lambda [R]

[2, N_s]
[0.01, 10]
[10𝐸 − 7, 100]

FeSCH [30]

nt [N]

strategy [C]

[1, N_s]
SFD, LDF, FCR

UM [50]
𝑝 [R]

qua_T [C]

[0.01, 0.1]
cli , cohen

TD [12]

strategy [C]

k [N]

NN, EM

[1, N_s] VCB [37]

m [N]

lambda [R]

[2, 30]
[0.5, 1.5]

PCAmining
[28]

dime [N] [5, max(N_s,

N_t)

For full specification of all the parameters, please visit our repository: https://github.com/COLA-Laboratory/ase2020

Table 2: Overview of 16 selected classifiers ([N], [R] and [C] denote integer, real and categorical value, respectively).

Algorithm Parameter Range Algorithm Parameter Range Algorithm Parameter Range

Extra
Trees

Classifier
(EXs)

max_e [N]

criterion [C]

min_s_l [N]

splitter [C]

min_a_p [N]

[10, 100]
gini, entropy

[1, 20]
random, best

[2, N_s/10]

Extra
Tree

Classifier
(EXtree)

max_e [N]

criterion [C]

min_s_l [N]

splitter [C]

min_a_p [N]

[10, 100]
gini, entropy

[1, 20]
random, best

[2, N_s/10]

Decision
Tree (DT)

max_e [N]

criterion [C]

min_s_l [N]

splitter [C]

min_a_p [N]

[10, 100]
gini, entropy

[1, 20]
auto, sqrt, log2

[2, N_s/10]

Random
Forest (RF)

m_stim [N]

criterion [C]

splitter [C]

min_s_l [N]

min_a_p [N]

[10, 100]
gini, entropy

auto, sqrt, log2

[1, 20]
[2, N_s/10]

Support
Vector
Machine
(SVM)

C [R]

kernel [C]

degree [N]

coef0 [R]

gamma [R]

[0.001, 10]
rbf, lin, poly, sig

[1, 5]
[0, 10]
[0.01, 100]

Multilayer
Perceptron

(MLP)

active [C]

hid_l_s [N]

solver [C]

iter [N]

iden, log,

tanh, relu

[50, 200]
lbfgs, sgd, adam

[100, 250]
Passive

Aggressive
Classifier

(PAC)

C [R]

fit_int [C]

tol [R]

loss [C]

[0.001, 100]
true, false

[10𝐸 − 6, 0.1]
hinge, s_hinge

Perceptron

penalty [C]

alpha [R]

fit_int [C]

tol [R]

L1, L2

[10𝐸 − 6, 0.1]
true, false

[10𝐸 − 6, 0.1]

Naive
Bayes (NB)

NBType [C]

alpha [R]

norm [C]

gauss,

multi, comp

[0, 10]
ture, false

Ridge
alpha [R]

fit_int [C]

tol [R]

[10𝐸 − 5, 1000]
ture, false

[10𝐸 − 6, 0.1]
Bagging

n_est [N]

max_s [R]

max_f [R]

[10, 200]
[0.7, 1.0]
[0.7, 1.0]

Logistic
Regression

(LR)

penalty [C]

fit_int [C]

tol [R]

L1, L2

ture, false

[10𝐸 − 6, 0.1]
KNearest N-
eighbor(KNN)

n_neigh [N]

p [N]

[1, 50]
[1, 5]

Radius
Neighbors

radius [R]

weight [C]

[0, 10000]
uni, dist

Nearest
Centroid

metric [C] Euc, Man, Che,

Min, Mah

adaBoost
n_est [N]

rate [R]

[10, 1000]
[0.01, 10]

Classifier
(RNC)

Classifier
(NCC)

shrink_t [R] [0, 10]

For full specification of all the parameters, please visit our repository: https://github.com/COLA-Laboratory/ase2020

• Optimization algorithm: It is not uncommon that the train-

ing and evaluation of a CPDP model is computationally de-

manding and time consuming. To this end, in BiLO-CPDP,
we apply the Tree-structured Parzen Estimator (TPE) [4] — a

state-of-the-art Bayesian optimization algorithm for hyper-

parameter optimization of machine learning algorithms — as

the optimizer for the lower-level optimization, due primarily

to the following reasons:

– TPE copes with a wide range of variables well, including

integer, real, and categorical ones, which fits precisely

with our need [4].

– Recent work on CPDP [21] and from the machine learn-

ing community [7] have reported the outstanding perfor-

mance of TPE for expensive configuration problems.

As the pseudo-code shown in Algorithm 3, the TPE algo-

rithm first uses a space-filling technique to sample a set of

hyper-parameters’ values from the given configuration space

Θ𝑐 of transfer learner and classifier, which would then be

trained for collecting the training AUC performance (line 1).

All these constitute the initial dataset D. During the main

while-loop, a relatively cheap surrogate model of the expen-

sive physical model training and the AUC evaluation is built

based on all sampled data inD (line 3). Thereafter, a promis-

ing hyper-parameter configuration trial x𝑙𝑐 is identified by

optimizing the acquisition function (i.e., expected improve-

ment) following a classic Bayesian optimization rigour. The

AUC of x𝑙𝑐 is thereafter evaluated and used to augment D
(lines 4 to 6). At the end, the best hyper-parameter setting x𝑙∗

https://github.com/COLA-Laboratory/ase2020
https://github.com/COLA-Laboratory/ase2020

ASE ’20, September 21–25, 2020, Virtual Event, Australia Li, Xiang and Chen, et al.

Algorithm 2: searchCandidate(x𝑢 , ℓ𝑡): Search the next

combination candidate from the neighborhood of x𝑢

Input: Candidate CPDP model x𝑢 and newest tabu list ℓ𝑡
Output: The best CPDP model within x𝑢 ’s neighbor and its

optimal parameter settings xopt, the performance

of this CPDP model 𝑓opt, i.e., the value of

𝐹 (x𝑢 , x𝑙∗)
1 𝛿 ← Get the neighbors of x𝑢 ;
2 Θx𝑢 ← Get the configuration space of the transfer learner

and the classifier specified by x𝑢 ;
3 [x𝑙 ′, 𝑓x𝑢 (x𝑙 ′)] ← runTPE(x𝑢 ,Θx𝑢);
4 xopt ← (x𝑢 , x𝑙 ′), 𝑓opt ← 𝑓x𝑢 (x𝑙 ′);
5 foreach x𝑐 ∈ 𝛿 ∧ x𝑐 ∉ ℓ𝑡 do
6 Θx𝑐 ← Get the configuration space of the transfer

learner and the classifier specified by x𝑐 ;
7 [x𝑙 ′, 𝑓x𝑐 (x𝑙 ′)] ← runTPE(x𝑐 ,Θx𝑐);
8 if 𝑓x𝑐 (x𝑙 ′) > 𝑓opt then
9 xopt ← (x𝑐 , x𝑙 ′), 𝑓opt ← 𝑓x𝑐 (x𝑙 ′);

10 return xopt, 𝑓opt;

Algorithm 3: runTPE(x𝑢 ,Θx𝑢): Lower-level optimization

for identifying the optimal hyper-parameters.

Input: Combination of transfer learner and classifier x𝑢 ,
configuration space Θc

Output: Optimized hyper-parameters x𝑙∗ and its objective

function 𝑓x𝑢 (x𝑙∗)
1 D ← Use space-filling to sample a set of hyper-parameters

from Θ𝑐 and evaluate their objective functions;

2 while The lower-level time budget is not exhausted do
3 Use Tree Parzen to build a surrogate model based on D;

4 x𝑙𝑐 ← Best configuration based on the AUC predicted

by the acquisition function over the surrogate model;

5 𝑓x𝑢 (x𝑙𝑐) ← Evaluate the objective function of x𝑙𝑐 by

physically training the CPDP model;

6 D = D⋃{(x𝑙𝑐 , 𝑓x𝑢 (x𝑙𝑐))};
7 return (x𝑙∗, 𝑓x𝑢 (x𝑙∗)) ← argmax(x𝑙𝑐 ,𝑓x𝑢 (x𝑙𝑐)) ∈D {𝑓x𝑢 (x

𝑙𝑐)};

in D along with its AUC performance 𝑓x𝑢 (x𝑙∗) are returned
to the upper-level optimization routine (line 7).

4 EXPERIMENTAL SETUP
This section introduces our experiment setups

4
.

4.1 Dataset
In our experiments, the dataset of software projects is collected

according to the following three inclusion criteria:

(1) To promote the reproducibility and practicality of our exper-

iments, we only consider projects hosted in public reposito-

ries and are related to non-academic software.

4
All source code and data of this work can be publicly accessed via our repository:

https://github.com/COLA-Laboratory/ase2020

(2) To mitigate potential conclusion bias, projects are required

to cover different corpora and domains.

(3) To ensure the credibility of experiments, we focus on projects

that have already been used in the CPDP literature.

Note that a project is temporarily selected if it meets all above three

criteria. To further refine our dataset composition, we apply the

following two exclusion criteria to rule out inappropriate projects.

(1) It is not uncommon that the projects are evolved with more

than one version during their lifetime. Since different ver-

sions of the same project are highly likely to share many

similarities, they may simplify the transfer learning. In this

case, only the latest version of the project is kept.

(2) To promote the robustness of experiments, projects with re-

peated or missing data are ruled out from our consideration.

Based on the above inclusion criteria, we select five publicly

available datasets, i.e., JURECZKO, NASA, SOFTLAB, AEEEM, ReLink.
Note that all these datasets have been reviewed and discussed in

many recent survey in the CPDP literature [13–15, 51]. Thereafter,

SOFTLAB is further ruled out from our consideration according to

the above exclusion criteria. In addition, NASA is also not consid-

ered in our experiments since its data quality is relatively poor as

reported in [41]. At the end, the dataset considered in our experi-

ments consist of 20 open source projects with 10,952 instances. Its

characteristics are summarized as follows:

• AEEEM [6]: This dataset contains 5 open source projects with

5,371 instances. In particular, each instance has 61 metrics

with two different types, including static and process metrics

like the entropy of code changes and source code chorn.

• ReLink [49]: This dataset consists of 3 open source projects

with 649 instances. In particular, each instance comes with

26 static metrics. Note that the defect labels are further man-

ually verified after being generated from source code man-

agement system commit comments.

• JURECZKO [19]: This dataset originally consists of 92 released
software collected from a mix of open sourced, proprietary

and academic projects. With respect to the first inclusion

criterion, those proprietary and academic projects are not

considered. Moreover, since the projects in JURECZKO have
been updatedmore than once, according to the first exclusion

criterion, only the latest version of a project is considered

in our experiments. Ultimately, we choose 12 open source

projects with 4,932 instances from JURECZKO.

4.2 Experimental Procedure
Our experimental procedure follows the three-phases workflow of

BiLO-CPDP introduced in Section 3.1. Here we explain the corre-

sponding settings for each phase.

• In the data pre-processing phase for all peer CPDP techniques,
all projects in this work will be used as target domain data

in a round-robin manner, forming 20 different CPDP tasks.

This aims to mitigate the potential bias in conclusion.

• In the optimization phase, each CPDP task is allocated with

an overall time budget of one hour (i.e., 3, 600 seconds, as

suggested by Feurer et al. [8]) while setting each lower-level

exploitation as 20 seconds in BiLO-CPDP. When applicable,

https://github.com/COLA-Laboratory/ase2020

BiLO-CPDP: Bi-Level Programming for Automated Model Discovery in CPDP ASE ’20, September 21–25, 2020, Virtual Event, Australia

Table 3: Scott-Knott test on BiLO-CPDP and existing CPDP techniques over 30 runs. (the larger rank, the better; gray=the best)

CPDP Technique A
pa

ch
e

EQ JD
T

LC M
L

PD
E

Sa
fe

To
m
ca
t

Zx
in
g

an
t

ca
m
el

iv
y

jE
di
t

lo
g4

j

lu
ce
ne

po
i

sy
na

ps
e

ve
lo
ci
ty

xa
la
n

xe
rc
es

NNfilter-NB 6 5 4 8 5 3 8 14 4 6 7 9 3 8 8 6 2 3 8 7

UM-NB 2 7 6 5 4 3 1 9 4 10 7 11 5 9 7 8 6 8 10 8

UM-LR 5 3 6 7 4 3 6 12 4 9 5 10 7 10 5 4 4 3 5 7

CLIFE-NB 3 4 4 3 1 3 6 9 1 8 4 6 8 7 4 6 4 5 4 4

CLIFE-KNN 3 3 7 4 2 3 1 12 4 7 3 6 7 6 4 4 4 4 6 4

FeSCH-RF 3 3 4 2 3 3 5 10 1 6 2 8 8 4 4 5 4 5 4 6

GIS-NB 1 3 1 3 1 1 1 9 4 10 5 5 8 7 4 4 4 6 2 5

FeSCH-LR 4 3 4 1 2 3 5 2 1 7 3 7 5 5 4 4 5 7 7 6

CLIFE-SVM 4 3 4 4 3 2 1 7 4 2 3 8 6 6 4 7 3 3 8 3

TD-RF 3 3 6 3 2 3 5 6 3 5 3 2 8 3 4 4 3 5 6 3

TD-LR 2 1 4 3 2 3 5 9 1 4 3 6 8 6 4 4 3 6 9 3

TD-MLP 4 3 4 3 1 3 1 7 4 7 3 8 7 4 2 5 3 5 9 3

TD-DT 4 6 6 3 2 3 4 8 1 6 3 7 6 5 1 3 3 5 2 3

FeSCH-DT 4 3 3 3 2 3 5 8 2 7 3 5 2 8 1 2 3 2 5 3

VCB-SVM 4 2 7 3 2 3 2 2 1 2 2 2 5 3 4 2 1 1 1 2

CDE_SMOTE-RF 3 4 4 5 2 3 1 1 4 1 1 1 1 3 2 1 1 1 1 1

CDE_SMOTE-KNN 4 3 4 3 1 3 5 1 4 1 1 1 1 4 6 1 3 2 12 1

FSS_bagging-RF 2 8 5 3 1 3 1 4 4 3 2 2 6 1 4 3 3 6 2 2

FSS_bagging-NB 2 3 2 4 3 2 3 11 4 6 3 3 8 1 2 2 3 2 3 3

FSS_bagging-LR 3 3 5 3 3 3 6 5 1 4 2 8 9 2 3 4 4 4 2 5

HISNN-NB 4 1 1 1 1 1 6 3 4 4 3 4 4 3 2 2 3 3 2 2

BiLO-CPDP 6 8 7 6 5 4 7 13 5 11 6 12 10 11 7 8 6 9 11 9
The raw AUC values can be found in our repository: https://github.com/COLA-Laboratory/ase2020

the same budget is given to other state-of-the-art peer CPDP

techniques that permit hyper-parameter optimization in the

comparison, e.g., Auto-sklearn [8]. We apply the TPE algo-

rithm implementation integrated in Hyperopt5, a popular
Python library for hyper-parameter tuning in machine learn-

ing [5], for the lower-level routine of BiLO-CPDP.
• In the performance validation phase, AUC is used as the per-

formance metric. Due to the stochastic nature of BiLO-CPDP
and some peer CPDP techniques considered, each technique

is independently repeated 30 times for a given CPDP task

and the mean AUC values are recorded for comparison.

4.3 Ranking, Statistical Test and Effect Size
In our experiments, we use the following three statistical measures

to interpret the statistical significance of our comparative results.

• Scott-Knott test: Instead of merely comparing the rawAUC

values, we apply the Scott-Knott test to rank the performance

of different peer techniques over 30 runs on each project, as

recommended by Mittas and Angelis [27]. In a nutshell, the

Scott-Knott test uses a statistical test and effect size to divide

the performance of peer techniques into several clusters. In

particular, the performance of peer techniques within the

same cluster are statistically insignificant, i.e., their overall

AUC values are statistically equivalent. Note that the clus-

tering process terminates until no split can be made. Finally,

each cluster can be assigned a rank according to the mean

5
http://hyperopt.github.io/hyperopt/

AUC values achieved by the peer techniques within the clus-

ter. In particular, since a greater AUC is preferred, the larger

the rank is, the better performance of the technique achieves.

• Wilcoxon signed-rank test:Weapply theWilcoxon signed-

rank test [48] with a significant level 𝑝 = 0.05 [3] to inves-

tigate the statistical significance of the comparisons. It is a

non-parametric statistical test that makes little assumption

about the underlying distribution of the data and has been

recommended in software engineering research [3].

• A12 effect size: To ensure the resulted differences are not

generated from a trivial effect, we apply𝐴12 [46] as the effect

size measure to evaluate the probability that one technique is

better than another. According to Vargha and Delaney [46],

when comparing BiLO-CDPD with another peer technique

in our experiments, 𝐴12 = 0.5 means they are equivalent.

𝐴12 > 0.5 denotes that BiLO-CDPD is better for more than

50% of the times. In particular, 0.56 ≤ 𝐴12 < 0.64 indicates

a small effect size while 0.64 ≤ 𝐴12 < 0.71 and 𝐴12 ≥ 0.71

mean a medium and a large effect size, respectively.

Note that both Wilcoxon signed-rank test and 𝐴12 are also used in

the Scott-Knott test for generating the clusters.

4.4 Research Questions
We seek to answer the following four research questions (RQs)

through our experimental evaluation:

• RQ1: Is BiLO-CPDP able to automatically configure a CPDP

model having better performance than the existing CPDP

techniques under their reported settings?

https://github.com/COLA-Laboratory/ase2020
http://hyperopt.github.io/hyperopt/

ASE ’20, September 21–25, 2020, Virtual Event, Australia Li, Xiang and Chen, et al.

NNfilter-NB

UM-NB

UM-LR

CLIFE-NB

CLIFE-KNN

FeSCH-RF

GIS-NB

FeSCH-LR

CLIFE-SVM

TD-RF

TD-LR

TD-MLP

TD-DT

FeSCH-DT

VCB-SVM

CDE_SMOTE-RF

CDE_SMOTE-KNN

FSS_bagging-RF

FSS_bagging-NB

FSS_bagging-LR

HISNN-NB

BiLO-CPDP

0

50

100

150

200

Ra
nk

Figure 2: Total ranks achieved by BiLO-CPDP (the right most
one) and the 21 peer techniques (the larger rank, the better;
the dashed line and dotted line denote the best and average
result over the 21 peer techniques, respectively).

• RQ2:How is the performance of BiLO-CPDP comparingwith

Auto- Sklearn, a state-of-the-art AutoML tool?

• RQ3: Is the bi-level programming in BiLO-CPDP beneficial?

• RQ4: Given a limited computational budget, which level in

BiLO-CPDP is more important and deserves more budget?

5 RESULTS AND DISCUSSIONS
In this section, we present and discuss the results of our empirical

experiments and address the RQs posed in Section 4.4.

5.1 Comparison with Existing CPDPWork
5.1.1 Method. In order to answer RQ1, we use the transfer learners
and classifiers collected in Tables 1 and 2 to constitute 21 peer CPDP

techniques in comparison with BiLO-CPDP. Note that although

there are only 13 transfer learners listed in Table 1, some of them are

combined withmore than one classifier to constitute different CPDP

models used in the literature (e.g., TD is combined with classifiers RF,
LR, MLP and DT that constitute four different CPDP models in [12]).

For the parameter settings, we use the tuned values as reported in

the corresponding work.

5.1.2 Results and Analysis. From the experimental results on the

Scott-Knott test shown in Table 3, it is clear to see that BiLO-CPDP
is the best on 14 out of 20 (70%) projects, second only to one other

on five cases. In contrast, most of the other peer CPDP techniques,

albeit hand crafted by domain experts, are not as competitive as

BiLO-CPDP. In particular, NNfilter-NB is the most outstanding

peer technique that is the best on only 7 out 20 (35%) projects while

the other peer techniques rarely take the best rank across all 20

projects. Noteworthily, the performance of NNfilter-NB ties with

BiLO-CPDP in two of its best results. In terms of the total ranks

achieved over all projects, as shown in Fig. 2, we can observe the

clear superiority of BiLO-CPDPwhich is at least 50% better than the

other 21 peer techniques. Furthermore, we notice that the superior

performance of BiLO-CPDP is consistent across all 20 projects in

view of its top three ranked positions achieved in all projects. In

contrast, the performance of existing CPDP techniques exhibit clear

variations depending on the underlying target projects.

Table 4: Mean AUC (standard deviation) for BiLO-CPDP and
Auto-Sklearn over 30 runs (gray=better; bold=𝑝<.05).

Project BiLO-CPDP Auto-sklearn 𝑝-value
poi 8.1703E-1 (4.38E-3) 6.5262E-1 (6.98E-3) 1.71E-6

synapse 7.1999E-1 (7.72E-3) 6.0183E-1 (3.68E-3) 1.65E-6

Zxing 6.3949E-1 (5.37E-3) 6.2615E-1 (1.45E-6) 1.91E-6

ant 8.0006E-1 (8.26E-3) 7.4530E-1 (7.63E-3) 1.71E-6

log4j 8.4196E-1 (1.52E-2) 6.0965E-1 (1.19E-2) 1.57E-6

Safe 7.9923E-1 (2.09E-2) 6.7513E-1 (6.15E-3) 1.64E-6

ivy 8.0657E-1 (3.51E-3) 7.2407E-1 (9.64E-4) 1.19E-6

PDE 6.8539E-1 (2.57E-3) 5.9781E-1 (2.22E-16) 1.62E-6

camel 6.2228E-1 (4.01E-3) 5.9006E-1 (1.11E-16) 1.62E-6

lucene 7.1065E-1 (8.13E-3) 6.4408E-1 (4.87E-6) 1.37E-6

JDT 7.3705E-1 (1.09E-2) 6.7517E-1 (1.11E-16) 1.66E-6

jEdit 8.5207E-1 (3.77E-2) 7.1589E-1 (5.70E-3) 1.68E-6

EQ 7.1714E-1 (1.34E-2) 6.0201E-1 (3.33E-16) 1.73E-6

velocity 7.0220E-1 (8.40E-3) 6.0896E-1 (4.50E-2) 1.61E-6

Tomcat 7.7295E-1 (1.40E-3) 7.3892E-1 (1.32E-2) 1.45E-7

Apache 7.4808E-1 (8.27E-3) 7.4787E-1 (3.33E-16) 6.58E-1

ML 6.4966E-1 (1.58E-3) 6.1708E-1 (2.22E-16) 1.73E-6

xerces 7.1552E-1 (1.03E-2) 5.9892E-1 (6.03E-3) 1.71E-6

LC 7.0859E-1 (1.89E-2) 6.2476E-1 (1.11E-16) 1.73E-6

xalan 7.6250E-1 (7.67E-3) 6.7732E-1 (2.31E-2) 1.71E-6

poi
synapse

Zxing

ant
log4j

Safe
ivy

PDE
camel

lucene

JDT
jEdit

EQ velocity

Tomcat

Apache

ML xerces

LC xalan

0.6

0.7

0.8

0.9

1.0

Ef
fe

ct
 S

iz
e

(A
12

)

Figure 3: 𝐴12 result between BiLO-CPDP and Auto-Sklearn
over 30 runs (𝐴12 > 0.5 means BiLO-CPDP is better).

Response to RQ1: BiLO-CPDP is generally better than the other
21 existing CPDP techniques over all 20 projects. Unlike others that
were hand-crafted by domain experts to certain extents, BiLO-CPDP
builds an effective CPDP model in a completely automated manner,
leading to highly competitive performance over different projects.

5.2 Comparison with Auto-Sklearn
5.2.1 Method. In principle, BiLO-CPDP is an AutoML tool that au-

tomatically searches for the right combination of transfer learner

and classifier and their optimized hyper-parameter settings for a

given CPDP task. To validate its competitiveness from the perspec-

tive of AutoML, we compare the performance of BiLO-CPDP with
Auto-Sklearn6 [8], a state-of-the-art and readily available AutoML

tool that can also optimize the combination and its parameters.

5.2.2 Results and Analysis. From the comparison results of AUC

values shown in Table 4, we clearly see the overwhelmingly supe-

rior performance of BiLO-CPDP versus Auto-Sklearn where the

AUC values obtained by BiLO-CPDP are all better than those of

Auto-Sklearn. In particular, all those better results, except on

6
https://automl.github.io/auto-sklearn/master/

https://automl.github.io/auto-sklearn/master/

BiLO-CPDP: Bi-Level Programming for Automated Model Discovery in CPDP ASE ’20, September 21–25, 2020, Virtual Event, Australia

Apache, are statistically significant, according to the 𝑝 values shown

in the last column of Table 4. Furthermore, as shown in Fig. 3, all𝐴12

values suggest a large effect size. In particular, we see an overwhelm-

ing 𝐴12 = 1, except only on Zxing and Apache. These indicate that
the improvements on the AUC results brought by BiLO-CPDP over

that of the Auto-Sklearn are significantly large in general.

The results are caused by the fact that Auto-Sklearn does not
have a bi-level structure, hence it encodes all transfer learner and

classifier combinations along with their corresponding hyper-para-

meter settings into an integrated solution at a single-level, which

is solved by the SMAC algorithm [17]. During its optimization pro-

cess, a combination of transfer learner and classifier is selected first.

Thereafter, the variables corresponding to the hyper-parameters of

the chosen transfer learner and the classifier become active while

the remaining variables are set to be dummy. By this means, the

total number of variables considered in Auto-Sklean goes up to

93, resulting a unnecessarily much larger search space comparing

with BiLO-CPDP. Given the limited budget, Auto-Sklearn therefore
ends up with a less effective exploration of both useful combina-

tions of transfer learners and classifiers and their hyper-parameter

settings.

Response to RQ2: Comparing with the state-of-the-art AutoML
tool Auto-Sklearn, BiLO-CPDP achieves significantly better results
given a limited computational budget.

5.3 Comparison with Single-Level Variant
5.3.1 Method. It is conservative to curious about the usefulness

brought by this bi-level programming formulation and why not sim-

ply formulating a single-level problem that consists of both combi-

nation and parameters. The comparison with Auto-Sklearn, which
is at a single-level, partially validates this concern, but the results

can be biased by the fact that it uses a different optimization algo-

rithm. To fully evaluate the effectiveness of bi-level programming,

we develop a single-level variant of BiLO-CPDP, dubbed SLO-CPDP,
which differs from BiLO-CPDP only on the solution representation.

Specifically, SLO-CPDP is similar to Auto-Sklearn in the sense

that they both work on single-level optimization — the transfer

learner and classifier, together with their hyper-parameters, are en-

coded as a single solution representation. However, the difference is

that SLO-CPDP exploits the TPE algorithm as the Bayesian optimizer,

which is identical to BiLO-CPDP. Auto-Sklearn, in contrast, uses

the classic SMAC algorithm that leverages Random Forest to build

the surrogate model.

5.3.2 Results and Analysis. From the AUC values shown in Table 5,

we observe a rather superior performance achieved by BiLO-CPDP
over SLO-CPDP. Specifically, BiLO-CPDP again obtains a better AUC

value on all 20 projects. In particular, all better results are with sta-

tistical significance (𝑝<.05), as shown in the last column of Table 5.

Furthermore, from Fig. 4, we find that the differences between the

AUC values achieved by BiLO-CPDP and SLO-CPDP are with a large

effect size. Given such a result, we can infer that the ineffective-

ness of SLO-CPDP can be attributed to the enlarged search space

caused by the unwise coupling of transfer learner and classifier

combination along with their parameters at a single-level.

Table 5: Mean AUC (standard deviation) for BiLO-CPDP and
SLO-CPDP over 30 runs (gray=better; bold=𝑝<.05).

Project BiLO-CPDP SLO-CPDP 𝑝-value
poi 8.1703E-1 (4.38E-3) 5.7493E-1 (2.71E-1) 1.92E-6

synapse 7.1999E-1 (7.72E-3) 5.0601E-1 (2.33E-1) 1.73E-6

Zxing 6.3949E-1 (5.37E-3) 5.4209E-1 (1.46E-1) 1.92E-6

ant 8.0006E-1 (8.26E-3) 6.3099E-1 (1.76E-1) 1.73E-6

log4j 8.4196E-1 (1.52E-2) 6.2807E-1 (2.49E-1) 2.60E-6

Safe 7.9923E-1 (2.09E-2) 7.4254E-1 (3.96E-2) 5.74E-5

ivy 8.0657E-1 (3.51E-3) 6.3528E-1 (1.77E-1) 1.73E-6

PDE 6.8539E-1 (2.57E-3) 5.0874E-1 (2.52E-1) 1.73E-6

camel 6.2228E-1 (4.01E-3) 4.7330E-1 (2.15E-1) 5.22E-6

lucene 7.1065E-1 (8.13E-3) 5.8568E-1 (2.05E-1) 1.15E-4

JDT 7.3705E-1 (1.09E-2) 6.2603E-1 (1.81E-1) 1.36E-5

jEdit 8.5207E-1 (3.77E-2) 5.5203E-1 (2.50E-1) 1.73E-6

EQ 7.1714E-1 (1.34E-2) 5.4016E-1 (2.21E-1) 2.88E-6

velocity 7.0220E-1 (8.40E-3) 5.3123E-1 (2.11E-1) 1.73E-6

Tomcat 7.7295E-1 (1.40E-3) 5.6400E-1 (2.40E-1) 1.92E-6

Apache 7.4808E-1 (8.27E-3) 5.2924E-1 (1.23E-1) 1.01E-6

ML 6.4966E-1 (1.58E-3) 5.8287E-1 (1.53E-1) 7.16E-4

xerces 7.1552E-1 (1.03E-2) 6.3384E-1 (1.29E-1) 6.87E-5

LC 7.0859E-1 (1.89E-2) 5.3199E-1 (2.38E-1) 1.02E-5

xalan 7.6250E-1 (7.67E-3) 5.9866E-1 (2.21E-1) 5.79E-5

Response to RQ3: The bi-level programming in BiLO-CPDP con-
siderably contributes to its effectiveness. In contrast to the single-
level where the combination and parameters are formulated in a
“flat" way, bi-level programming significantly reduces the search
space and steer the search in a hierarchical manner, leading to better
performance under a limited budget.

5.4 Impact of Budget for the Two Levels
5.4.1 Method. In practice, it is not uncommon that the resource for

defect prediction, particular the time budget, is limited. In our exper-

iments, the total budget allocated to BiLO-CPDP is one hour in total,

following the best practice in the AutoML community [8]. However,

the unique bi-level programming formulated in BiLO-CPDP allows

us a flexible control over the budget allocated to the two levels,

hence it is interested to know how their budget allocations may

impact the performance. To this end, within the one hour total bud-

get, we set two budget allocation strategies: one with high budget

to the upper-level, dubbed BiLO-CPDP(h), that allows 20 seconds
for each low-level optimization, leaving more resources for explor-

ing the combinations at the upper-level. Note that 20 seconds are

very short for some model training thus is counter-intuitive. This

is also the default setting in BiLO-CPDP we used for other experi-

ments. Another one preserves high budget to the low-level, dubbed

BiLO-CPDP(l), in which the lower-level optimization is allocated

with 100 training and AUC evaluations. This allows a low-level

routine to consume at least 80 seconds (the smallest amount of time

required to complete 100 evaluations among all combinations) for

more sufficient exploration of the hyper-parameters.

5.4.2 Results and Analysis. As shown in Table 6, we can see that

BiLO-CPDP(h) is overwhelmingly superior to BiLO- CPDP(l)where
it obtains better AUC values on all 20 projects. In addition, from

ASE ’20, September 21–25, 2020, Virtual Event, Australia Li, Xiang and Chen, et al.

poi
synapse

Zxing

ant
log4j

Safe
ivy

PDE
camel

lucene

JDT
jEdit

EQ velocity

Tomcat

Apache

ML xerces

LC xalan

0.6

0.7

0.8

0.9

1.0

Ef
fe

ct
 S

iz
e

(A
12

)

Figure 4: 𝐴12 result between BiLO-CPDP and SLO-CPDP over 30
runs (𝐴12 > 0.5 means BiLO-CPDP is better).

Table 6: Mean AUC (standard deviation) for BiLO-CPDP(h)
and BiLO-CPDP(l) over 30 runs (gray=better; bold=𝑝<.05).

Project BiLO-CPDP(h) BiLO-CPDP(l) 𝑝-value
poi 8.1703E-1 (4.38E-3) 5.9447E-1 (2.74E-1) 3.85E-6

synapse 7.1999E-1 (7.72E-3) 6.1897E-1 (1.26E-1) 1.73E-6

Zxing 6.3949E-1 (5.37E-3) 6.1108E-1 (2.10E-2) 8.46E-6

ant 8.0006E-1 (8.26E-3) 4.6150E-1 (3.31E-1) 1.91E-6

log4j 8.4196E-1 (1.52E-2) 5.1593E-1 (2.91E-1) 2.46E-6

Safe 7.9923E-1 (2.09E-2) 7.1771E-1 (1.38E-1) 2.87E-6

ivy 8.0657E-1 (3.51E-3) 5.9659E-1 (3.04E-1) 5.23E-6

PDE 6.8539E-1 (2.57E-3) 4.3027E-1 (3.05E-1) 1.71E-6

camel 6.2228E-1 (4.01E-3) 3.9054E-1 (2.79E-1) 7.90E-6

lucene 7.1065E-1 (8.13E-3) 5.3341E-1 (2.69E-1) 1.12E-5

JDT 7.3705E-1 (1.09E-2) 3.7420E-1 (3.51E-1) 3.85E-6

jEdit 8.5207E-1 (3.77E-2) 5.0339E-1 (3.30E-1) 1.72E-6

EQ 7.1714E-1 (1.34E-2) 4.2035E-1 (3.22E-1) 8.37E-6

velocity 7.0220E-1 (8.40E-3) 5.0660E-1 (2.55E-1) 1.92E-6

Tomcat 7.7295E-1 (1.40E-3) 5.6762E-1 (2.87E-1) 2.50E-6

Apache 7.4808E-1 (8.27E-3) 7.1257E-1 (2.62E-2) 7.22E-6

ML 6.4966E-1 (1.58E-3) 3.7510E-1 (3.07E-1) 5.70E-6

xerces 7.1552E-1 (1.03E-2) 4.8507E-1 (2.72E-1) 3.87E-6

LC 7.0859E-1 (1.89E-2) 4.9327E-1 (3.00E-1) 1.23E-4

xalan 7.6250E-1 (7.67E-3) 4.9144E-1 (3.05E-1) 1.91E-6

poi
synapse

Zxing

ant
log4j

Safe
ivy

PDE
camel

lucene

JDT
jEdit

EQ velocity

Tomcat

Apache

ML xerces

LC xalan

0.6

0.7

0.8

0.9

1.0

Ef
fe

ct
 S

iz
e

(A
12

)

Figure 5: 𝐴12 result between BiLO-CPDP(h) and BiLO-CPDP(l)
over 30 runs (𝐴12 > 0.5 means BiLO-CPDP(h) is better).

the comparison results of 𝐴12 shown in Fig. 5, we can see that

the differences between AUC values achieved by the two budget

allocation strategies are categorized to have a large effect size.

The performance differences are due to the fact that the CPDP

model training can be rather time-consuming and unfavorable,

especially given a limited budget. Therefore, for BiLO-CPDP(l),
once a combination of transfer learner and classifier is selected at

the upper-level routine, its initiative to favor better exploration of

the hyper-parameters at the lower-level routine can easily consume

a significant amount of the budget (the median computational time

is around 300 seconds according to our offline statistics). This has

caused the combinatorial space of transfer learners and classifiers to

become severely under-explored. In contrast, by strictly restricting

the budget at the lower-level optimization routine, BiLO-CPDP(h)
suffers from a limited exploration of the hyper-parameter space,

but permitting a sufficient chance to explore many combinations

of transfer learners and classifiers. From the results, it evidences

that exploring the combination space is more important than using

the hyper-parameter space under a limited budget.

Response to RQ4: Given a limited budget, it is recommended to
allocate more expenditure to the upper-level optimization routine in
BiLO-CPDP. By this means, more combinations of transfer learner
and classifier can be investigated even without fully optimized
hyper-parameters, which is more beneficial to performance.

6 RELATEDWORK
In the past decades, machine learning classifiers have become

the core techniques for defect prediction, in which the success

can be greatly affected by the setting of the classifiers’ hyper-

parameters [20]. This is a challenging issue, as Jiang et al. [18]

pointed out that simply using the default values are dreadful, caus-

ing severely bad performance of the prediction. The automated

parameter optimization for defect predictors is therefore crucial.

Indeed, a large scale empirical study by Tantithamthavorn et al. [43,

44] found that well-tuned hyper-parameters can significantly boost

the performance of the classifiers in defect prediction. Fu et al. [9]

even suggest that such optimization should become a standard

practice in every single Software Engineering task. In light of this,

Agrawal and Menzies [2] have applied Differential Evolution to

tune SMOTE, a pre-processor for handling data imbalance, for pre-

dicting software defects. Their work focus on within-project defect

prediction though. Similarly, DODGE [1] is a recent tool that opti-

mizes the parameters of data pre-processor and classifier. Although

they aim for within-project case, the combination of pre-processor

and classifier can be resemble to our CPDP task. However, their op-

timization assumes conservative hybridization of all the parameters

and the combinations as a single-level optimization problem.

The importance of automated parameter optimization remains

stand in the context of CPDP, where the problem become even

more complex as the parameters of transfer learners also come

into play. Qu et al. [35] have shown that the parameter settings of

classifiers for CPDP are even more important. A few automated op-

timizers exist for CPDP, for example, Öztürk [31] and Qu et al. [34]

examine various different optimization algorithms to tune CPDP

models. Nevertheless, they focus only on the parameter tuning

whilst ignore the combination of transfer learner and classifier dur-

ing optimization. Indeed, Li et al. [21] further demonstrate that the

parameter interactions between transfer learner and classifier, as

well as their combination, also play an integral role to the prediction

performance. Auto-Sklearn [8], which is a widely-used generic

tool to tune arbitrary machine learning algorithms, is also highly

potential for CPDP tuning. However, again, its design has restricted

that the combination of transfer learner and classifier along with

their parameters need to be tuned as a single optimization problem,

which worsen its performance compared with BiLO-CPDP, as we
have shown in Section 5.

BiLO-CPDP: Bi-Level Programming for Automated Model Discovery in CPDP ASE ’20, September 21–25, 2020, Virtual Event, Australia

Although the potentials of bi-level programming have been ex-

plored for other Software Engineering problems, e.g., code smell

detection [39] and test case generation [40], to the best of our knowl-

edge, its adoption has never been reported in the context of CPDP.

Our work is therefore unique to all aforementioned techniques in

the sense that:

• BiLO-CPDP is the first of its kind to formulate bi-level pro-

gramming for the parameter optimization of CPDP.

• BiLO-CPDP automatically optimizes not only the parameters,

but also discover the possible combination of transfer learner

and classifier from a given portfolio.

• We show that exploring the combination of transfer learner

and classifier is more important than the their parameters

tuning, the former should thus deserve more computational

budget. In this regard, the bi-level programming formulated

in BiLO-CPDP provides better flexibility to achieve such a

requirement of fine-grained budget allocation.

7 THREATS TO VALIDITY
Similar to many empirical studies in software engineering, our

work is subject to threats to validity.

Construct threats can be raised from the experiment uncertainty

caused by the learning and optimization. To mitigate this, we have

repeated 30 runs for each techniques and compare the techniques

using Scott-Knott test [27], supported by Wilcoxon signed-rank

test [48] and 𝐴12 effect size metric [46]. Therefore, whenever we

report “A is better than B", we imply that A is indeed statistically

better with large effect size. The single metric AUC may also sub-

ject to such a threat. However, AUC was chosen mainly due to

its parameter-free nature and high reliability as reported in the

machine learning community [24].

Internal threats can be related to the parameter setting, which in

our case the key parameter is the time budget for optimization. In-

deed, a different budget may affect the result, and therefore we have

set a total budget following the state-of-the-practice suggested in

the AutoML community [8], which is reasonable given the required

runs. We have also investigated the relative importance of budget

allocation between the upper- and lower-level in BiLO-CPDP.
External threats are concerned with whether the findings are

generailzable to other projects. To mitigate such, as discussed in Sec-

tion 4, our 20 projects cover a wide spectrum of the real-world cases

with diverse characteristics, each of which was used as the target

domain data to be predicted using the other 19 ones as sources.

8 CONCLUSION
The choice of combination of transfer learner and classifier along

with their hyper-parameter settings have a significant impact to the

performance of CPDP model. In this paper, we propose BiLO-CPDP,
a tool that is able to automatically develop a high-performance

CPDP model for the given CPDP task. Specifically, BiLO-CPDP, for
the first time, formulates the automated CPDP model discovery

problem from a bi-level programming perspective. In particular, the

upper-level optimization routine searches for the right combination

of transfer learner and classifier while the lower-level optimization

routine optimizes the corresponding hyper-parameters associated

with the chosen combination. Furthermore, the hierarchical opti-

mization paradigm allows a more flexible control of the compu-

tational budget at both levels. From our empirical study, we have

shown that BiLO-CPDP

• automatically develops a better CPDP model comparing to

21 state-of-the-art CPDP techniques with hand-crafted com-

bination and reported parameter settings.

• overwhelmingly outperforms Auto-Sklearn, a state-of-the-
art AutoML tool, and the single-level optimization variant

of BiLO-CPDP.
• allows software engineers to set more search budget for the

upper-level, which significantly boosts the performance.

BiLO-CPDP showcases the importance of automatically optimiz-

ing the combination of transfer learners and classifiers, together

with their parameters. This paves a new way to enable more in-

telligent parameter optimization and adaptation for CPDP model

building. In future, we seek to consider multiple objectives within

the bi-level programming and to investigate more precise effects

of allocating budget between the two levels. We also plan to fur-

ther distinguish between the parameters for transfer learner and

classifier at the low-level, as it has been shown that the parameter

tuning of the former is more important than the latter [21].

REFERENCES
[1] A. Agrawal, W. Fu, D. Chen, X. Shen, and T. Menzies. 2019. How to “DODGE"

Complex Software Analytics. IEEE Transactions on Software Engineering (2019),

1–1.

[2] Amritanshu Agrawal and Tim Menzies. 2018. Is "better data" better than "better

data miners"?: on the benefits of tuning SMOTE for defect prediction. In ICSE’18:
Proc. of the 40th International Conference on Software Engineering. ACM, 1050–

1061.

[3] Andrea Arcuri and Lionel C. Briand. 2011. A practical guide for using statistical

tests to assess randomized algorithms in software engineering. In ICSE’11: Proc.
of the 33rd International Conference on Software Engineering. ACM, 1–10.

[4] James Bergstra, Rémi Bardenet, Yoshua Bengio, and Balázs Kégl. 2011. Algorithms

for Hyper-Parameter Optimization. InNIPS’11: Proc. of the 25th Annual Conference
on Neural Information Processing Systems. 2546–2554.

[5] James Bergstra, Daniel Yamins, and David D. Cox. 2013. Making a Science of

Model Search: Hyperparameter Optimization in Hundreds of Dimensions for

Vision Architectures. In ICML’13: Proc. of the 30th International Conference on
Machine Learning, Vol. 28. 115–123.

[6] Marco D’Ambros, Michele Lanza, and Romain Robbes. 2010. An extensive com-

parison of bug prediction approaches. In Proceedings of the 7th International
Working Conference on Mining Software Repositories, MSR 2010 (Co-located with
ICSE), Cape Town, South Africa, May 2-3, 2010, Proceedings. 31–41.

[7] Matthias Feurer and Frank Hutter. 2019. Hyperparameter Optimization. In

Automated Machine Learning - Methods, Systems, Challenges. 3–33.
[8] Matthias Feurer, Aaron Klein, Katharina Eggensperger, Jost Tobias Springenberg,

Manuel Blum, and Frank Hutter. 2015. Efficient and Robust Automated Machine

Learning. In NIPS’15: Proc. of the 2015 Annual Conference on Neural Information
Processing Systems. 2962–2970.

[9] Wei Fu, Tim Menzies, and Xipeng Shen. 2016. Tuning for software analytics: Is it

really necessary? Information and Software Technology 76 (2016), 135–146.

[10] Fred Glover and Manuel Laguna. 1998. Tabu Search. Vol. 1–3. Springer US,

2093–2229.

[11] Zhimin He, Fayola Peters, Tim Menzies, and Ye Yang. 2013. Learning from

open-source projects: An empirical study on defect prediction. In 2013 ACM/IEEE
International Symposium on Empirical Software Engineering and Measurement.
IEEE, 45–54.

[12] Steffen Herbold. 2013. Training data selection for cross-project defect prediction.

In ESEM’13: Proc. of the 9th International Conference on Predictive Models in
Software Engineering. 1–10.

[13] Steffen Herbold. 2017. A systematic mapping study on cross-project defect

prediction. CoRR abs/1705.06429 (2017).

[14] Steffen Herbold, Alexander Trautsch, and Jens Grabowski. 2018. A Comparative

Study to Benchmark Cross-Project Defect Prediction Approaches. IEEE Trans.
Software Eng. 44, 9 (2018), 811–833.

ASE ’20, September 21–25, 2020, Virtual Event, Australia Li, Xiang and Chen, et al.

[15] Seyedrebvar Hosseini, Burak Turhan, and Dimuthu Gunarathna. 2019. A Sys-

tematic Literature Review and Meta-Analysis on Cross Project Defect Prediction.

IEEE Trans. Software Eng. 45, 2 (2019), 111–147.
[16] Seyedrebvar Hosseini, Burak Turhan, and Mika Mäntylä. 2018. A benchmark

study on the effectiveness of search-based data selection and feature selection for

cross project defect prediction. Information and Software Technology 95 (2018),

296–312.

[17] Frank Hutter, Holger H. Hoos, and Kevin Leyton-Brown. 2011. Sequential Model-

Based Optimization for General Algorithm Configuration. In LION5: Proc. of the
5th International Conference Learning and Intelligent Optimization (Lecture Notes
in Computer Science), Vol. 6683. Springer, 507–523.

[18] Yue Jiang, Bojan Cukic, and Tim Menzies. 2008. Can data transformation help in

the detection of fault-prone modules?. In DEFECTS. ACM, 16–20.

[19] Marian Jureczko and Lech Madeyski. 2010. Towards identifying software project

clusters with regard to defect prediction. In PROMISE’10: Proc. of the 6th Interna-
tional Conference on Predictive Models in Software Engineering. 9.

[20] Akif Günes Koru and Hongfang Liu. 2005. An investigation of the effect of

module size on defect prediction using static measures. ACM SIGSOFT Software
Engineering Notes 30, 4 (2005), 1–5.

[21] Ke Li, Zilin Xiang, Tao Chen, ShuoWang, and Kay Chen Tan. 2020. Understanding

the Automated Parameter Optimization on Transfer Learning for CPDP: An

Empirical Study. In ICSE’20: Proc. of the 42th International Conference on Software
Engineering. accepted for publication.

[22] Zhiqiang Li, Xiao-Yuan Jing, and Xiaoke Zhu. 2018. Progress on approaches to

software defect prediction. IET Software 12, 3 (2018), 161–175.
[23] Nachai Limsettho, Kwabena Ebo Bennin, Jacky W Keung, Hideaki Hata, and

Kenichi Matsumoto. 2018. Cross project defect prediction using class distribution

estimation and oversampling. Information and Software Technology 100 (2018),

87–102.

[24] Charles X. Ling, Jin Huang, and Harry Zhang. 2003. AUC: a Statistically Consis-

tent and more Discriminating Measure than Accuracy. In IJCAI’03: Proc. of the
8th International Joint Conference on Artificial Intelligence. 519–526.

[25] Thilo Mende. 2010. Replication of defect prediction studies: problems, pitfalls

and recommendations. In PROMISE’10: Proc. of the 6th International Conference
on Predictive Models in Software Engineering. 5.

[26] Thilo Mende and Rainer Koschke. 2009. Revisiting the evaluation of defect

prediction models. In PROMISE’09: Proc. of the 5th International Workshop on
Predictive Models in Software Engineering. 7.

[27] Nikolaos Mittas and Lefteris Angelis. 2013. Ranking and Clustering Software

Cost Estimation Models through a Multiple Comparisons Algorithm. IEEE Trans.
Software Eng. 39, 4 (2013), 537–551.

[28] Nachiappan Nagappan, Thomas Ball, and Andreas Zeller. 2006. Mining metrics

to predict component failures. In Proceedings of the 28th international conference
on Software engineering. 452–461.

[29] Jaechang Nam, Sinno Jialin Pan, and Sunghun Kim. 2013. Transfer defect learning.

In ICSE’13: Proc. of the 35th International Conference on Software Engineering. 382–
391.

[30] Chao Ni, Wang-Shu Liu, Xiang Chen, Qing Gu, Dao-Xu Chen, and Qi-Guo Huang.

2017. A cluster based feature selection method for cross-project software defect

prediction. Journal of Computer Science and Technology 32, 6 (2017), 1090–1107.

[31] Muhammed Maruf Öztürk. 2019. The impact of parameter optimization of

ensemble learning on defect prediction. The Computer Science Journal of Moldova
27, 1 (2019), 85–128.

[32] Fayola Peters, Tim Menzies, Liang Gong, and Hongyu Zhang. 2013. Balancing

privacy and utility in cross-company defect prediction. IEEE Transactions on
Software Engineering 39, 8 (2013), 1054–1068.

[33] Shaojian Qiu, Lu Lu, and Siyu Jiang. 2018. Multiple-components weights model

for cross-project software defect prediction. IET Software 12, 4 (2018), 345–355.
[34] Yubin Qu, Xiang Chen, Yingquan Zhao, and Xiaolin Ju. 2018. Impact of Hyper Pa-

rameter Optimization for Cross-Project Software Defect Prediction. International
Journal of Performability Engineering 14, 6 (2018), 1291–1299.

[35] Yubin Qu, Xiang Chen, Yingquan Zhao, and Xiaolin Ju. 2018. Impact of Hyper Pa-

rameter Optimization for Cross-Project Software Defect Prediction. International
Journal of Performability Engineering 14, 6 (2018).

[36] Foyzur Rahman, Daryl Posnett, and Premkumar T. Devanbu. 2012. Recalling the

"imprecision" of cross-project defect prediction. In FSE’12: Proc. of the 20th ACM
SIGSOFT Symposium on the Foundations of Software Engineering. ACM, 61.

[37] Duksan Ryu, Okjoo Choi, and Jongmoon Baik. 2016. Value-cognitive boosting

with a support vector machine for cross-project defect prediction. Empirical
Software Engineering 21, 1 (2016), 43–71.

[38] Duksan Ryu, Jong-In Jang, and Jongmoon Baik. 2015. A hybrid instance selection

using nearest-neighbor for cross-project defect prediction. Journal of Computer
Science and Technology 30, 5 (2015), 969–980.

[39] Dilan Sahin, Marouane Kessentini, Slim Bechikh, and KalyanmoyDeb. 2014. Code-

smell detection as a bilevel problem. ACM Transactions on Software Engineering
and Methodology (TOSEM) 24, 1 (2014), 1–44.

[40] Dilan Sahin, Marouane Kessentini, Manuel Wimmer, and Kalyanmoy Deb. 2015.

Model transformation testing: a bi-level search-based software engineering ap-

proach. Journal of Software: Evolution and Process 27, 11 (2015), 821–837.
[41] Martin J. Shepperd, Qinbao Song, Zhongbin Sun, and Carolyn Mair. 2013. Data

Quality: Some Comments on the NASA Software Defect Datasets. IEEE Trans.
Software Eng. 39, 9 (2013), 1208–1215.

[42] Ankur Sinha, Pekka Malo, and Kalyanmoy Deb. 2018. A Review on Bilevel

Optimization: From Classical to Evolutionary Approaches and Applications. IEEE
Trans. Evolutionary Computation 22, 2 (2018), 276–295.

[43] Chakkrit Tantithamthavorn, Shane McIntosh, Ahmed E. Hassan, and Kenichi

Matsumoto. 2016. Automated parameter optimization of classification techniques

for defect prediction models. In ICSE’16: Proc. of the 38th International Conference
on Software Engineering. 321–332.

[44] Chakkrit Tantithamthavorn, Shane McIntosh, Ahmed E. Hassan, and Kenichi

Matsumoto. 2019. The Impact of Automated Parameter Optimization on Defect

Prediction Models. IEEE Transactions on Software Engineering 45, 7 (2019), 683–

711.

[45] Burak Turhan, Tim Menzies, Ayse Basar Bener, and Justin S. Di Stefano. 2009.

On the relative value of cross-company and within-company data for defect

prediction. Empirical Software Engineering 14, 5 (2009), 540–578. https://doi.org/

10.1007/s10664-008-9103-7

[46] András Vargha and Harold D. Delaney. 2000. A Critique and Improvement of the

CL Common Language Effect Size Statistics of McGraw and Wong.

[47] Heinrich Von Stackelberg. 2010. Market structure and equilibrium. Springer

Science & Business Media.

[48] Frank Wilcoxon. 1945. Individual Comparisons by Ranking Methods.

[49] RongxinWu, Hongyu Zhang, Sunghun Kim, and Shing-Chi Cheung. 2011. ReLink:

recovering links between bugs and changes. In ESEC/FSE’11: Proc. of 19th ACM
SIGSOFT Symposium on the Foundations ofSoftware Engineering and 13th European
Software Engineering Conference. 15–25.

[50] Feng Zhang, Audris Mockus, Iman Keivanloo, and Ying Zou. 2014. Towards

building a universal defect prediction model. In Proceedings of the 11th Working
Conference on Mining Software Repositories. 182–191.

[51] Yuming Zhou, Yibiao Yang, Hongmin Lu, Lin Chen, Yanhui Li, Yangyang Zhao,

Junyan Qian, and Baowen Xu. 2018. How FarWe Have Progressed in the Journey?

An Examination of Cross-Project Defect Prediction. ACM Trans. Softw. Eng.
Methodol. 27, 1 (2018), 1:1–1:51.

[52] Thomas Zimmermann, Nachiappan Nagappan, Harald C. Gall, Emanuel Giger,

and Brendan Murphy. 2009. Cross-project defect prediction: a large scale ex-

periment on data vs. domain vs. process. In ESEC/FSE’09: Proc. of the 7th joint
meeting of the European Software Engineering Conference and the ACM SIGSOFT
International Symposium on Foundations of Software Engineering. ACM, 91–100.

https://doi.org/10.1007/s10664-008-9103-7
https://doi.org/10.1007/s10664-008-9103-7

	Abstract
	1 Introduction
	2 Bi-level Programming
	3 Bi-level Programming for Automated CPDP Model Discovery
	3.1 Overview of BiLO-CPDP
	3.2 Upper-Level Optimization
	3.3 Lower-Level Optimization

	4 Experimental Setup
	4.1 Dataset
	4.2 Experimental Procedure
	4.3 Ranking, Statistical Test and Effect Size
	4.4 Research Questions

	5 Results and Discussions
	5.1 Comparison with Existing CPDP Work
	5.2 Comparison with Auto-Sklearn
	5.3 Comparison with Single-Level Variant
	5.4 Impact of Budget for the Two Levels

	6 Related Work
	7 Threats to Validity
	8 conclusion
	References

